The lithium-ion battery is currently the most important type of battery among the rechargeable high-performance batteries. While small lithium-ion batteries are already being used commercially in consumer electronics, electrical tools, hybrid vehicles, and electric cars, the commercial use of larger energy storage units is still in its early stages. The maximum storage capacity of conventional lithium-ion batteries has, however, nearly been reached. In order to achieve advances in performance, it is therefore necessary to press ahead with the development of new storage material and approaches. New electrochemical pairings and new ideas for an even more compact design are needed to achieve another significant jump in energy density.

  • LI-Batteries
  • Post-LI-Batteries
  • Alternative Storage
  • Publications

Lithium-ion batteries

The lithium-ion battery is currently the most important type of battery among the rechargeable high-performance batteries. While small lithium-ion batteries are already being used commercially in consumer electronics, electrical tools, hybrid vehicles, and electric cars, the commercial use of larger energy storage units is still in its early stages. The maximum storage capacity of conventional lithium-ion batteries has, however, nearly been reached. In order to achieve advances in performance, it is therefore necessary to press ahead with the development of new storage material and approaches. New electrochemical pairings and new ideas for an even more compact design are needed to achieve another significant jump in energy density.

Post-lithium batteries

Lithium-ion and metal hydride batteries are established systems that are currently being successfully employed for energy storage in electrically powered applications. In order to make future devices safer, less expensive, more sustainable, and more powerful, global research is looking for alternatives to the current systems. Lithium is supposed to be replaced by other elements which can also make bidirectional batteries possible. In order to attain this goal it is necessary for us to develop anew all the components of the battery and to acquire an understanding of the electrochemical processes. Of the four new types of batteries that are currently the object of international research, which are based on using magnesium, sodium, chloride, or fluoride as the charge carriers, two (the chloride-ion and fluoride-ion batteries) were first presented by HIU. HIU developed the electrolyte that is currently the best for use in a magnesium battery; this has also made it possible to build the first reversibly working magnesium-sulfur cells with extended cycles. With the exception of the sodium-ion battery, all of these systems have the potential of achieving markedly higher energy storage densities than the present lithium-ion batteries. HIU has played a pioneering role in these new fields of research.

Alternative electrochemical storage and conversion devices

Fuel cells are among the enabling technologies toward a safe, reliable, and sustainable energy solution. Yet the lack of clean hydrogen sources and a sizable hydrogen infrastructure limits the fuel-cell applications today. Due to their elevated operating temperature, between 150°C and 180°C, high-temperature proton exchange membrane fuel cells (HT-PEMFCs) based on phosphoric acid doped polybenzimidazole (H3PO4/PBI) membranes can tolerate fuel contaminants such as carbon monoxide (CO) and hydrogen sulfide (H2S) without considerable performance loss. These are typical byproducts of the steam reforming process, which produces hydrogen from hydrocarbon fuels such as methanol or natural gas. So it is an appealing concept to couple a HT-PEMFC stack directly with a fuel processor, which can be used as auxiliary power units (APUs). These APUs use the fossil fuel resources more efficiently and help reduce emission of CO2. This might also be a good strategy for the wide deployment of fuel cells before the hydrogen infrastructure is established. The fuel cell system’s efficiency can be further increased by reusing the exhaust heat produced during electrical power generation.
The slow oxygen reduction reaction in concentrated phosphoric acid remains a major technological challenge for future development of HT-PEMFCs. The slow reaction rate is believed to be related to strong adsorption of phosphoric acid species on the surface of the platinum catalyst. It is generally accepted that adsorption of molecular or anionic species from the concentrated phosphoric acid electrolyte hinders ORR by blocking active sites on the catalyst surface. To gain a better understanding of the adsorption mechanisms we conduct systematic studies employing various types of perfluoroalkylated derivatives of phosphoric acid. We evaluated these model electrolytes for their adsorption behavior and influence on ORR on a polycrystalline platinum surface.

A Self-Conditioned Metalloporphyrin as a Highly Stable Cathode for Fast Rechargeable Magnesium Batteries.
Abouzari-Lotf, E.; Azmi, R.; Li, Z.; Shakouri, S.; Chen, Z.; Zhao-Karger, Z.; Klyatskaya, S.; Maibach, J.; Ruben, M.; Fichtner, M.
2021. ChemSusChem, 14, 1–8. doi:10.1002/cssc.202100340VolltextVolltext der Publikation als PDF-Dokument
Comparative patent analysis for the identification of global research trends for the case of battery storage, hydrogen and bioenergy.
Baumann, M.; Domnik, T.; Haase, M.; Wulf, C.; Emmerich, P.; Rösch, C.; Zapp, P.; Naegler, T.; Weil, M.
2021. Technological forecasting and social change, 165, Art.-Nr.: 120505. doi:10.1016/j.techfore.2020.120505VolltextVolltext der Publikation als PDF-Dokument
Kadi4Mat: A Research Data Infrastructure for Materials Science.
Brandt, N.; Griem, L.; Herrmann, C.; Schoof, E.; Tosato, G.; Zhao, Y.; Zschumme, P.; Selzer, M.
2021. Data science journal, 20 (1), Article no: 8. doi:10.5334/dsj-2021-008VolltextVolltext der Publikation als PDF-Dokument
Multiphase-field modeling of spinodal decomposition during intercalation in an Allen-Cahn framework.
Daubner, S.; Kubendran Amos, P. G.; Schoof, E.; Santoki, J.; Schneider, D.; Nestler, B.
2021. Physical review materials, 5 (3), Article no: 035406. doi:10.1103/PhysRevMaterials.5.035406VolltextVolltext der Publikation als PDF-Dokument
Energy Flow Analysis of Laboratory Scale Lithium-Ion Battery Cell Production.
Erakca, M.; Baumann, M.; Bauer, W.; Biasi, L. de; Hofmann, J.; Bold, B.; Weil, M.
2021. iScience. doi:10.1016/j.isci.2021.102437
Challenges and Pitfalls of Conducting Prospective LCA for Emerging Technologies: The Example of Metal-Free Organic Batteries.
Erakca, M.; Weil, M.; Bresser, D.; Bautista, S. P.
2021. 15th Conference Society And Materials (EcoSD 2021), Online, 10.–11. Mai 2021 
In operando study of orthorhombic V₂O₅ as positive electrode materials for K-ion batteries.
Fu, Q.; Sarapulova, A.; Zhu, L.; Melinte, G.; Missyul, A.; Welter, E.; Luo, X.; Knapp, M.; Ehrenberg, H.; Dsoke, S.
2021. Journal of Energy Chemistry. doi:10.1016/j.jechem.2021.04.027
Investigation of Parameters Influencing the Producibility of Anodes for Sodium-Ion Battery Cells.
Hofmann, J.; Wurba, A.-K.; Bold, B.; Maliha, S.; Schollmeyer, P.; Fleischer, J.; Klemens, J.; Scharfer, P.; Schabel, W.
2021. Production at the leading edge of technology – Proceedings of the 10th Congress of the German Academic Association for Production Technology (WGP), Dresden, 23-24 September 2020. Ed.: B.-A. Behrens, 171–181, Springer. doi:10.1007/978-3-662-62138-7_18
Recent developments and future perspectives of anionic batteries.
Karkera, G.; Reddy, M. A.; Fichtner, M.
2021. Journal of power sources, 481, Art.-Nr. 228877. doi:10.1016/j.jpowsour.2020.228877
Simulating mechanical wave propagation within the framework of phase-field modelling.
Liu, X.; Schneider, D.; Daubner, S.; Nestler, B.
2021. Computer methods in applied mechanics and engineering, 381, Article: 113842. doi:10.1016/j.cma.2021.113842
An Alternative Charge-Storage Mechanism for High-Performance Sodium-Ion and Potassium-Ion Anodes.
Ma, Y.; Ma, Y.; Euchner, H.; Liu, X.; Zhang, H.; Qin, B.; Geiger, D.; Biskupek, J.; Carlsson, A.; Kaiser, U.; Groß, A.; Indris, S.; Passerini, S.; Bresser, D.
2021. ACS Energy Letters, 6 (3), 915–924. doi:10.1021/acsenergylett.0c02365
Phase-field formulation of a fictitious domain method for particulate flows interacting with complex and evolving geometries.
Reder, M.; Schneider, D.; Wang, F.; Daubner, S.; Nestler, B.
2021. International Journal for Numerical Methods in Fluids. doi:10.1002/fld.4984
Investigation of “NaCoTiO” as a multi-phase positive electrode material for sodium batteries.
Sabi, N.; Sarapulova, A.; Indris, S.; Dsoke, S.; Trouillet, V.; Mereacre, L.; Ehrenberg, H.; Saadoune, I.
2021. Journal of power sources, 481, Article: 229120. doi:10.1016/j.jpowsour.2020.229120
ZnS nanoparticles embedded in N-doped porous carbon xerogel as electrode materials for sodium-ion batteries.
Tian, G.; Song, Y.; Luo, X.; Zhao, Z.; Han, F.; Chen, J.; Huang, H.; Tang, N.; Dsoke, S.
2021. Journal of alloys and compounds, 877, Art.-Nr.: 160299. doi:10.1016/j.jallcom.2021.160299
Environmental assessment of a new generation battery: The magnesium-sulfur system.
Tomasini Montenegro, C.; Peters, J. F.; Baumann, M.; Zhao-Karger, Z.; Wolter, C.; Weil, M.
2021. Journal of energy storage, 35, 102053. doi:10.1016/j.est.2020.102053
Enhanced Potassium Storage Capability of Two-Dimensional Transition-Metal Chalcogenides Enabled by a Collective Strategy.
Wu, Y.; Zhang, Q.; Xu, Y.; Xu, R.; Li, L.; Li, Y.; Zhang, C.; Zhao, H.; Wang, S.; Kaiser, U.; Lei, Y.
2021. ACS applied materials & interfaces. doi:10.1021/acsami.1c01891
Investigation on the formation of Mg metal anode/electrolyte interfaces in Mg/S batteries with electrolyte additives.
Bhaghavathi Parambath, V.; Zhao-Karger, Z.; Diemant, T.; Jäckle, M.; Li, Z.; Scherer, T.; Gross, A.; Behm, R. J.; Fichtner, M.
2020. Journal of materials chemistry / A, 8 (43), 22998–23010. doi:10.1039/d0ta05762b
Stripping and Plating a Magnesium Metal Anode in Bromide‐Based Non‐Nucleophilic Electrolytes.
Dongmo, S.; Zaubitzer, S.; Schüler, P.; Krieck, S.; Jörissen, L.; Wohlfahrt‐Mehrens, M.; Westerhausen, M.; Marinaro, M.
2020. ChemSusChem, 13 (13), 3530–3538. doi:10.1002/cssc.202000249
Modeling of Ion Agglomeration in Magnesium Electrolytes and its Impacts on Battery Performance.
Drews, J.; Danner, T.; Jankowski, P.; Vegge, T.; García Lastra, J. M.; Liu, R.; Zhao‐Karger, Z.; Fichtner, M.; Latz, A.
2020. ChemSusChem, 13 (14), 3599–3604. doi:10.1002/cssc.202001034VolltextVolltext der Publikation als PDF-Dokument
First results from in situ transmission electron microscopy studies of all-solid-state fluoride ion batteries.
Fawey, M. H.; Chakravadhanula, V. S. K.; Munnangi, A. R.; Rongeat, C.; Hahn, H.; Fichtner, M.; Kübel, C.
2020. Journal of power sources, 466, Article: 228283. doi:10.1016/j.jpowsour.2020.228283
Phase transformation, charge transfer, and ionic diffusion of NaMnV(PO) in sodium-ion batteries: a combined first-principles and experimental study.
Gao, X.; Lian, R.; He, L.; Fu, Q.; Indris, S.; Schwarz, B.; Wang, X.; Chen, G.; Ehrenberg, H.; Wei, Y.
2020. Journal of materials chemistry / A, 8 (34), 17477–17486. doi:10.1039/d0ta05929c
Dynamics of porous and amorphous magnesium borohydride to understand solid state Mg-ion-conductors.
Heere, M.; Hansen, A.-L.; Payandeh, S. H.; Aslan, N.; Gizer, G.; Sørby, M. H.; Hauback, B. C.; Pistidda, C.; Dornheim, M.; Lohstroh, W.
2020. Scientific reports, 10 (1), Article No. 9080. doi:10.1038/s41598-020-65857-6VolltextVolltext der Publikation als PDF-Dokument
Investigation of N and S Co-doped Porous Carbon for Sodium-Ion Battery, Synthesized by Using Ammonium Sulphate for Simultaneous Activation and Heteroatom Doping.
Ikram, S.; Dsoke, S.; Sarapulova, A.; Müller, M.; Rana, U. A.; Siddiqi, H. M.
2020. Journal of the Electrochemical Society, 167 (10), Article: 100531. doi:10.1149/1945-7111/ab9a01
A 3d-printed composite electrode for sustained electrocatalytic oxygen evolution.
Liu, S.; Liu, R.; Gao, D.; Trentin, I.; Streb, C.
2020. Chemical communications, 56 (60), 8476–8479. doi:10.1039/D0CC03579C
Multi‐Electron Reactions enabled by Anion‐Based Redox Chemistry for High‐Energy Multivalent Rechargeable Batteries.
Li, Z.; Vinayan, B. P.; Jankowski, P.; Njel, C.; Roy, A.; Vegge, T.; Maibach, J.; Lastra, J. M. G.; Fichtner, M.; Zhao‐Karger, Z.
2020. Angewandte Chemie / International edition, 59 (28), 11483–11490. doi:10.1002/anie.202002560VolltextVolltext der Publikation als PDF-Dokument
Copper Porphyrin as a Stable Cathode for High‐Performance Rechargeable Potassium Organic Batteries.
Lv, S.; Yuan, J.; Chen, Z.; Gao, P.; Shu, H.; Yang, X.; Liu, E.; Tan, S.; Ruben, M.; Zhao‐Karger, Z.; Fichtner, M.
2020. ChemSusChem, 13 (9), 2286–2294. doi:10.1002/cssc.202000425
Understanding the mechanism of byproduct formation within operandosynchrotron techniques and its effects on the electrochemical performance of VO(B) nanoflakes in aqueous rechargeable zinc batteries.
Pang, Q.; Zhao, H.; Lian, R.; Fu, Q.; Wei, Y.; Sarapulova, A.; Sun, J.; Wang, C.; Chen, G.; Ehrenberg, H.
2020. Journal of materials chemistry / A, 8 (19), 9567–9578. doi:10.1039/d0ta00858c
New maximally disordered – High entropy intermetallic phases (MD-HEIP) of the GdLaSnSbM (M=Li, Na, Mg): Synthesis, structure and some properties.
Pavlyuk, V.; Balińska, A.; Rożdżyńska-Kiełbik, B.; Pavlyuk, N.; Dmytriv, G.; Stetskiv, A.; Indris, S.; Schwarz, B.; Ehrenberg, H.
2020. Journal of alloys and compounds, 838, Art. Nr.: 155643. doi:10.1016/j.jallcom.2020.155643
Choosing the right carbon additive is of vital importance for high-performance Sb-based Na-ion batteries.
Pfeifer, K.; Arnold, S.; Budak, Ö.; Luo, X.; Presser, V.; Ehrenberg, H.; Dsoke, S.
2020. Journal of materials chemistry / A, 2020 (8), 6092–6104. doi:10.1039/D0TA00254BVolltextVolltext der Publikation als PDF-Dokument
Controlled‐Atmosphere Flame Fusion Single‐Crystal Growth of Non‐Noble fcc, hcp, and bcc Metals Using Copper, Cobalt, and Iron.
Schuett, F. M.; Esau, D.; Varvaris, K. L.; Gelman, S.; Björk, J.; Rosen, J.; Jerkiewicz, G.; Jacob, T.
2020. Angewandte Chemie / International edition, 59 (32), 13246–13252. doi:10.1002/anie.201915389VolltextVolltext der Publikation als PDF-Dokument
A Lithium‐Free Energy‐Storage Device Based on an Alkyne‐Substituted‐Porphyrin Complex.
Chen, Z.; Gao, P.; Wang, W.; Klyatskaya, S.; Zhao‐Karger, Z.; Wang, D.; Kübel, C.; Fuhr, O.; Fichtner, M.; Ruben, M.
2019. ChemSusChem, 12 (16), 3737–3741. doi:10.1002/CSSC.201901541VolltextVolltext der Publikation als PDF-Dokument
Exploits, advances and challenges benefiting beyond Li-ion battery technologies.
El Kharbachi, A.; Zavorotynska, O.; Latroche, M.; Cuevas, F.; Yartys, V.; Fichtner, M.
2019. Journal of alloys and compounds, 817, Article no: 153261. doi:10.1016/j.jallcom.2019.153261
Hetero-layered MoS/C composites enabling ultrafast and durable Na storage.
Li, Z.; Liu, S.; Vinayan, B. P.; Zhao-Karger, Z.; Diemant, T.; Wang, K.; Behm, R. J.; Kübel, C.; Klingeler, R.; Fichtner, M.
2019. Energy storage materials, 21, 115–123. doi:10.1016/j.ensm.2019.05.042
Direct Conversion of CO₂ to Multi-Layer Graphene using Cu–Pd Alloys.
Molina-Jirón, C.; Chellali, M. R.; Kumar, C. N. S.; Kübel, C.; Velasco, L.; Hahn, H.; Moreno-Pineda, E.; Ruben, M.
2019. ChemSusChem, 12 (15), 3509–3514. doi:10.1002/cssc.201901404
NiTiOPO phosphate: Sodium insertion mechanism and electrochemical performance in sodium-ion batteries.
Nassiri, A.; Sabi, N.; Sarapulova, A.; Dahbi, M.; Indris, S.; Ehrenberg, H.; Saadoune, I.
2019. Journal of power sources, 418, 211–217. doi:10.1016/j.jpowsour.2019.02.038
Interface in Solid-State Lithium Battery: Challenges, Progress, and Outlook.
Pervez, S. A.; Cambaz, M. A.; Thangadurai, V.; Fichtner, M.
2019. ACS applied materials & interfaces, 11 (25), 22029–22050. doi:10.1021/acsami.9b02675
A review of hard carbon anode materials for sodium-ion batteries and their environmental assessment.
Peters, J. F.; Abdelbaky, M.; Baumann, M.; Weil, M.
2019. Matériaux & techniques, 107 (5), Article No. 503. doi:10.1051/mattech/2019029
Electromigration in Lithium Whisker Formation Plays Insignificant Role during Electroplating.
Rulev, A. A.; Sergeev, A. V.; Yashina, L. V.; Jacob, T.; Itkis, D. M.
2019. ChemElectroChem, 6 (5), 1324–1328. doi:10.1002/celc.201801652
Insights into the electrochemical processes of rechargeable magnesium–sulfur batteries with a new cathode design.
Vinayan, B. P.; Euchner, H.; Zhao-Karger, Z.; Cambaz, M. A.; Li, Z.; Diemant, T.; Behm, R. J.; Gross, A.; Fichtner, M.
2019. Journal of materials chemistry / A, 7 (44), 25490–25502. doi:10.1039/c9ta09155f
MgScSe - A Magnesium Solid Ionic Conductor for All-Solid-State Mg Batteries?.
Wang, L.-P.; Zhao-Karger, Z.; Klein, F.; Chable, J.; Braun, T.; Schür, A. R.; Wang, C.-R.; Guo, Y.-G.; Fichtner, M.
2019. ChemSusChem, 12 (10), 2286–2293. doi:10.1002/cssc.201900225