Research
The lithium-ion battery is currently the most important type of battery among the rechargeable high-performance batteries. While small lithium-ion batteries are already being used commercially in consumer electronics, electrical tools, hybrid vehicles, and electric cars, the commercial use of larger energy storage units is still in its early stages. The maximum storage capacity of conventional lithium-ion batteries has, however, nearly been reached. In order to achieve advances in performance, it is therefore necessary to press ahead with the development of new storage material and approaches. New electrochemical pairings and new ideas for an even more compact design are needed to achieve another significant jump in energy density.
Lithium-ion batteries
The lithium-ion battery is currently the most important type of battery among the rechargeable high-performance batteries. While small lithium-ion batteries are already being used commercially in consumer electronics, electrical tools, hybrid vehicles, and electric cars, the commercial use of larger energy storage units is still in its early stages. The maximum storage capacity of conventional lithium-ion batteries has, however, nearly been reached. In order to achieve advances in performance, it is therefore necessary to press ahead with the development of new storage material and approaches. New electrochemical pairings and new ideas for an even more compact design are needed to achieve another significant jump in energy density.
Post-lithium batteries
Lithium-ion and metal hydride batteries are established systems that are currently being successfully employed for energy storage in electrically powered applications. In order to make future devices safer, less expensive, more sustainable, and more powerful, global research is looking for alternatives to the current systems. Lithium is supposed to be replaced by other elements which can also make bidirectional batteries possible. In order to attain this goal it is necessary for us to develop anew all the components of the battery and to acquire an understanding of the electrochemical processes. Of the four new types of batteries that are currently the object of international research, which are based on using magnesium, sodium, chloride, or fluoride as the charge carriers, two (the chloride-ion and fluoride-ion batteries) were first presented by HIU. HIU developed the electrolyte that is currently the best for use in a magnesium battery; this has also made it possible to build the first reversibly working magnesium-sulfur cells with extended cycles. With the exception of the sodium-ion battery, all of these systems have the potential of achieving markedly higher energy storage densities than the present lithium-ion batteries. HIU has played a pioneering role in these new fields of research.
Alternative electrochemical storage and conversion devices
Fuel cells are among the enabling technologies toward a safe, reliable, and sustainable energy solution. Yet the lack of clean hydrogen sources and a sizable hydrogen infrastructure limits the fuel-cell applications today. Due to their elevated operating temperature, between 150°C and 180°C, high-temperature proton exchange membrane fuel cells (HT-PEMFCs) based on phosphoric acid doped polybenzimidazole (H3PO4/PBI) membranes can tolerate fuel contaminants such as carbon monoxide (CO) and hydrogen sulfide (H2S) without considerable performance loss. These are typical byproducts of the steam reforming process, which produces hydrogen from hydrocarbon fuels such as methanol or natural gas. So it is an appealing concept to couple a HT-PEMFC stack directly with a fuel processor, which can be used as auxiliary power units (APUs). These APUs use the fossil fuel resources more efficiently and help reduce emission of CO2. This might also be a good strategy for the wide deployment of fuel cells before the hydrogen infrastructure is established. The fuel cell system’s efficiency can be further increased by reusing the exhaust heat produced during electrical power generation.
The slow oxygen reduction reaction in concentrated phosphoric acid remains a major technological challenge for future development of HT-PEMFCs. The slow reaction rate is believed to be related to strong adsorption of phosphoric acid species on the surface of the platinum catalyst. It is generally accepted that adsorption of molecular or anionic species from the concentrated phosphoric acid electrolyte hinders ORR by blocking active sites on the catalyst surface. To gain a better understanding of the adsorption mechanisms we conduct systematic studies employing various types of perfluoroalkylated derivatives of phosphoric acid. We evaluated these model electrolytes for their adsorption behavior and influence on ORR on a polycrystalline platinum surface.
Hofmann, J.; Wurba, A.-K.; Bold, B.; Maliha, S.; Schollmeyer, P.; Fleischer, J.; Klemens, J.; Scharfer, P.; Schabel, W.
2021. Production at the leading edge of technology – Proceedings of the 10th Congress of the German Academic Association for Production Technology (WGP), Dresden, 23-24 September 2020. Ed.: B.-A. Behrens, 171–181, Springer. doi:10.1007/978-3-662-62138-7_18
Karkera, G.; Reddy, M. A.; Fichtner, M.
2021. Journal of power sources, 481, Art.Nr. 228877. doi:10.1016/j.jpowsour.2020.228877
Sabi, N.; Sarapulova, A.; Indris, S.; Dsoke, S.; Trouillet, V.; Mereacre, L.; Ehrenberg, H.; Saadoune, I.
2021. Journal of power sources, 481, Article: 229120. doi:10.1016/j.jpowsour.2020.229120
Santoki, J.; Mukherjee, A.; Schneider, D.; Nestler, B.
2021. Journal of applied physics, 129 (2), Article no: 025110. doi:10.1063/5.0033228
Zhang, T.; Kamlah, M.
2021. Journal of power sources, 483, Article: 229187. doi:10.1016/j.jpowsour.2020.229187
Anjass, M.; Lowe, G. A.; Streb, C.
2020. Angewandte Chemie / International edition, anie.202010577. doi:10.1002/anie.202010577
Behm, R. J.; Buchner, F.; Eckardt, M.; Böhler, T.; Kim, J.; Gerlach, J.; Schnaidt, J.
2020. ChemSusChem, 13 (12), 3199–3211. doi:10.1002/cssc.202000503
Braunwarth, L.; Jung, C.; Jacob, T.
2020. Topics in catalysis. doi:10.1007/s11244-020-01324-w
Dillenz, M.; Sotoudeh, M.; Euchner, H.; Groß, A.
2020. Frontiers in energy research, 8, Article no: 584654. doi:10.3389/fenrg.2020.584654
Dongmo, S.; Zaubitzer, S.; Schüler, P.; Krieck, S.; Jörissen, L.; Wohlfahrt‐Mehrens, M.; Westerhausen, M.; Marinaro, M.
2020. ChemSusChem, 13 (13), 3530–3538. doi:10.1002/cssc.202000249
Drews, J.; Danner, T.; Jankowski, P.; Vegge, T.; García Lastra, J. M.; Liu, R.; Zhao‐Karger, Z.; Fichtner, M.; Latz, A.
2020. ChemSusChem, 13 (14), 3599–3604. doi:10.1002/cssc.202001034
Eckardt, M.; Alwast, D.; Schnaidt, J.; Behm, R. J.
2020. ChemSusChem, 13. doi:10.1002/cssc.202000672
Esau, D.; Schuett, F. M.; Varvaris, K. L.; Björk, J.; Jacob, T.; Jerkiewicz, G.
2020. Electrocatalysis, 11 (1), 1–13. doi:10.1007/s12678-019-00575-w
Fichtner, M.
2020. Royal Society of Chemistry (RSC). doi:10.1039/9781788016407
Gaissmaier, D.; Borg, M.; Fantauzzi, D.; Jacob, T.
2020. ChemSusChem, 13 (4), 771–783. doi:10.1002/cssc.201902860
Gao, X.; Lian, R.; He, L.; Fu, Q.; Indris, S.; Schwarz, B.; Wang, X.; Chen, G.; Ehrenberg, H.; Wei, Y.
2020. Journal of materials chemistry / A, 8 (34), 17477–17486. doi:10.1039/d0ta05929c
Heere, M.; Hansen, A.-L.; Payandeh, S. H.; Aslan, N.; Gizer, G.; Sørby, M. H.; Hauback, B. C.; Pistidda, C.; Dornheim, M.; Lohstroh, W.
2020. Scientific reports, 10 (1), Article No. 9080. doi:10.1038/s41598-020-65857-6
Ikram, S.; Dsoke, S.; Sarapulova, A.; Müller, M.; Rana, U. A.; Siddiqi, H. M.
2020. Journal of the Electrochemical Society, 167 (10), Article: 100531. doi:10.1149/1945-7111/ab9a01
Jeschull, F.; Maibach, J.
2020. Electrochemistry communications, 121, Article no: 106874. doi:10.1016/j.elecom.2020.106874
Jung, C. K.; Stottmeister, D.; Jacob, T.
2020. Energy technology. doi:10.1002/ente.202000388
Kim, J.; Buchner, F.; Behm, R. J.
2020. The journal of physical chemistry <Washington, DC> / C, 124 (39), 21476–21490. doi:10.1021/acs.jpcc.0c06015
Lindner, J.; Weick, F.; Endres, F.; Schuster, R.
2020. The journal of physical chemistry <Washington, DC> / C, 124 (1), 693–700. doi:10.1021/acs.jpcc.9b09871
Liu, S.; Liu, R.; Gao, D.; Trentin, I.; Streb, C.
2020. Chemical communications, 56 (60), 8476–8479. doi:10.1039/D0CC03579C
Li, Z.; Vinayan, B. P.; Jankowski, P.; Njel, C.; Roy, A.; Vegge, T.; Maibach, J.; Lastra, J. M. G.; Fichtner, M.; Zhao‐Karger, Z.
2020. Angewandte Chemie / International edition, 59 (28), 11483–11490. doi:10.1002/anie.202002560
Li, Z.; Vinayan, B. P.; Diemant, T.; Behm, R. J.; Fichtner, M.; Zhao-Karger, Z.
2020. Small, 16 (39), Art.-Nr.: 2001806. doi:10.1002/smll.202001806
Lv, S.; Yuan, J.; Chen, Z.; Gao, P.; Shu, H.; Yang, X.; Liu, E.; Tan, S.; Ruben, M.; Zhao‐Karger, Z.; Fichtner, M.
2020. ChemSusChem, 13 (9), 2286–2294. doi:10.1002/cssc.202000425
Mengele, A. K.; Müller, C.; Nauroozi, D.; Kupfer, S.; Dietzek, B.; Rau, S.
2020. Inorganic chemistry, 59 (17), 12097–12110. doi:10.1021/acs.inorgchem.0c01022
Nasir, M. H.; Janjua, N. K.; Santoki, J.
2020. Journal of the Electrochemical Society, 167 (13), 130526. doi:10.1149/1945-7111/abb83d
Pang, Q.; Zhao, H.; Lian, R.; Fu, Q.; Wei, Y.; Sarapulova, A.; Sun, J.; Wang, C.; Chen, G.; Ehrenberg, H.
2020. Journal of materials chemistry / A, 8 (19), 9567–9578. doi:10.1039/d0ta00858c
Pavlyuk, V.; Balińska, A.; Rożdżyńska-Kiełbik, B.; Pavlyuk, N.; Dmytriv, G.; Stetskiv, A.; Indris, S.; Schwarz, B.; Ehrenberg, H.
2020. Journal of alloys and compounds, 838, Art. Nr.: 155643. doi:10.1016/j.jallcom.2020.155643
Pfeifer, K.; Arnold, S.; Budak, Ö.; Luo, X.; Presser, V.; Ehrenberg, H.; Dsoke, S.
2020. Journal of materials chemistry / A, 2020 (8), 6092–6104. doi:10.1039/D0TA00254B
Pfeifer, K.; Greenstein, M. F.; Aurbach, D.; Luo, X.; Ehrenberg, H.; Dsoke, S.
2020. ChemElectroChem, 7 (16), 3487–3495. doi:10.1002/celc.202000894
Schuett, F. M.; Esau, D.; Varvaris, K. L.; Gelman, S.; Björk, J.; Rosen, J.; Jerkiewicz, G.; Jacob, T.
2020. Angewandte Chemie / International edition, 59 (32), 13246–13252. doi:10.1002/anie.201915389
Stottmeister, D.; Groß, A.
2020. ChemSusChem, 13 (12), 3147–3153. doi:10.1002/cssc.202000709
Weber, I.; Kim, J.; Buchner, F.; Schnaidt, J.; Behm, R. J.
2020. ChemSusChem. doi:10.1002/cssc.202000495
Zhang, T.; Kamlah, M.
2020. Journal of the Electrochemical Society, 167 (2), Art. Nr.: 020508. doi:10.1149/1945-7111/ab645a
Zhao, W.; Rohde, M.; Mohsin, I. U.; Ziebert, C.; Seifert, H. J.
2020. Batteries, 6 (4), Article: 55. doi:10.3390/batteries6040055
Baumann, M.; Peters, J.; Weil, M.
2019. Energy technology, 1901019. doi:10.1002/ente.201901019
Birkholz, O.; Gan, Y.; Kamlah, M.
2019. Powder technology, 351, 54–65. doi:10.1016/j.powtec.2019.04.005
Buchner, F.; Forster-Tonigold, K.; Kim, J.; Bansmann, J.; Groß, A.; Behm, R. J.
2019. Chemistry of materials, 31 (15), 5537–5549. doi:10.1021/acs.chemmater.9b01253
Chen, Z.; Gao, P.; Wang, W.; Klyatskaya, S.; Zhao‐Karger, Z.; Wang, D.; Kübel, C.; Fuhr, O.; Fichtner, M.; Ruben, M.
2019. ChemSusChem, 12 (16), 3737–3741. doi:10.1002/CSSC.201901541
Dixon, D.; Ávila, M.; Ehrenberg, H.; Bhaskar, A.
2019. ACS omega, 4 (6), 9731–9738. doi:10.1021/acsomega.9b00563
El Kharbachi, A.; Zavorotynska, O.; Latroche, M.; Cuevas, F.; Yartys, V.; Fichtner, M.
2019. Journal of alloys and compounds, 817, Article no: 153261. doi:10.1016/j.jallcom.2019.153261
Jäckle, M.; Groß, A.
2019. The journal of chemical physics, 151 (23), Article no: 234707. doi:10.1063/1.5133429
Kim, J.; Weber, I.; Buchner, F.; Schnaidt, J.; Behm, R. J.
2019. The journal of chemical physics, 151 (13), Article no: 134704. doi:10.1063/1.5119765
Li, Z.; Fuhr, O.; Fichtner, M.; Zhao-Karger, Z.
2019. Energy & environmental science, 12 (12), 3496–3501. doi:10.1039/c9ee01699f
Li, Z.; Liu, S.; Vinayan, B. P.; Zhao-Karger, Z.; Diemant, T.; Wang, K.; Behm, R. J.; Kübel, C.; Klingeler, R.; Fichtner, M.
2019. Energy storage materials. doi:10.1016/j.ensm.2019.05.042
Molina-Jirón, C.; Chellali, M. R.; Kumar, C. N. S.; Kübel, C.; Velasco, L.; Hahn, H.; Moreno-Pineda, E.; Ruben, M.
2019. ChemSusChem, 12 (15), 3509–3514. doi:10.1002/cssc.201901404
Nassiri, A.; Sabi, N.; Sarapulova, A.; Dahbi, M.; Indris, S.; Ehrenberg, H.; Saadoune, I.
2019. Journal of power sources, 418, 211–217. doi:10.1016/j.jpowsour.2019.02.038
Pervez, S. A.; Cambaz, M. A.; Thangadurai, V.; Fichtner, M.
2019. ACS applied materials & interfaces, 11 (25), 22029–22050. doi:10.1021/acsami.9b02675
Pfeifer, K.; Arnold, S.; Becherer, J.; Das, C.; Maibach, J.; Ehrenberg, H.; Dsoke, S.
2019. ChemSusChem, 12 (14), 3312–3319. doi:10.1002/cssc.201901056
Rulev, A. A.; Sergeev, A. V.; Yashina, L. V.; Jacob, T.; Itkis, D. M.
2019. ChemElectroChem, 6 (5), 1324–1328. doi:10.1002/celc.201801652
Sabi, N.; Sarapulova, A.; Indris, S.; Dsoke, S.; Zhao, Z.; Dahbi, M.; Ehrenberg, H.; Saadoune, I.
2019. ChemElectroChem, 6 (3), 892–903. doi:10.1002/celc.201801870
Santoki, J.; Mukherjee, A.; Schneider, D.; Nestler, B.
2019. Journal of applied physics, 126 (16), Article No.165305. doi:10.1063/1.5119714
Silvi, L.; Zhao-Karger, Z.; Röhm, E.; Fichtner, M.; Petry, W.; Lohstroh, W.
2019. Physical chemistry, chemical physics, 21 (2), 718–728. doi:10.1039/c8cp04316g
Vinayan, B. P.; Euchner, H.; Zhao-Karger, Z.; Cambaz, M. A.; Li, Z.; Diemant, T.; Behm, R. J.; Gross, A.; Fichtner, M.
2019. Journal of materials chemistry / A, 7 (44), 25490–25502. doi:10.1039/c9ta09155f
Wang, L.-P.; Zhao-Karger, Z.; Klein, F.; Chable, J.; Braun, T.; Schür, A. R.; Wang, C.-R.; Guo, Y.-G.; Fichtner, M.
2019. ChemSusChem, 12 (10), 2286–2293. doi:10.1002/cssc.201900225
Zhao-Karger, Z.; Fichtner, M.
2019. Frontiers in Chemistry, 6, Article: 656. doi:10.3389/fchem.2018.00656