• LI-Batteries
  • Post-LI-Batteries
  • Alternative Storage
  • Publications

Lithium-ion batteries

The lithium-ion battery is currently the most important type of battery among the rechargeable high-performance batteries. While small lithium-ion batteries are already being used commercially in consumer electronics, electrical tools, hybrid vehicles, and electric cars, the commercial use of larger energy storage units is still in its early stages. The maximum storage capacity of conventional lithium-ion batteries has, however, nearly been reached. In order to achieve advances in performance, it is therefore necessary to press ahead with the development of new storage material and approaches. New electrochemical pairings and new ideas for an even more compact design are needed to achieve another significant jump in energy density.

Representative Research Field Li-Batteries

Prof. Dr. Arnulf Latz

German Aerospace Center (DLR) at
Helmholtz Institute Ulm

Contact details

+49 711 6862 637

see short profile

Post-lithium batteries

Lithium-ion and metal hydride batteries are established systems that are currently being successfully employed for energy storage in electrically powered applications. In order to make future devices safer, less expensive, more sustainable, and more powerful, global research is looking for alternatives to the current systems. Lithium is supposed to be replaced by other elements which can also make bidirectional batteries possible. In order to attain this goal it is necessary for us to develop anew all the components of the battery and to acquire an understanding of the electrochemical processes. Of the four new types of batteries that are currently the object of international research, which are based on using magnesium, sodium, chloride, or fluoride as the charge carriers, two (the chloride-ion and fluoride-ion batteries) were first presented by HIU. HIU developed the electrolyte that is currently the best for use in a magnesium battery; this has also made it possible to build the first reversibly working magnesium-sulfur cells with extended cycles. With the exception of the sodium-ion battery, all of these systems have the potential of achieving markedly higher energy storage densities than the present lithium-ion batteries. HIU has played a pioneering role in these new fields of research.

Representative Research Field Post-Li-Batteries

Dr. Sonia Dsoke

Institute for Applied Materials – Energy Storage Systems (IAM-ESS)

Contact details

+49 721 608 41915

see short profile

Alternative electrochemical storage and conversion devices

Fuel cells are among the enabling technologies toward a safe, reliable, and sustainable energy solution. Yet the lack of clean hydrogen sources and a sizable hydrogen infrastructure limits the fuel-cell applications today. Due to their elevated operating temperature, between 150°C and 180°C, high-temperature proton exchange membrane fuel cells (HT-PEMFCs) based on phosphoric acid doped polybenzimidazole (H3PO4/PBI) membranes can tolerate fuel contaminants such as carbon monoxide (CO) and hydrogen sulfide (H2S) without considerable performance loss. These are typical byproducts of the steam reforming process, which produces hydrogen from hydrocarbon fuels such as methanol or natural gas. So it is an appealing concept to couple a HT-PEMFC stack directly with a fuel processor, which can be used as auxiliary power units (APUs). These APUs use the fossil fuel resources more efficiently and help reduce emission of CO2. This might also be a good strategy for the wide deployment of fuel cells before the hydrogen infrastructure is established. The fuel cell system’s efficiency can be further increased by reusing the exhaust heat produced during electrical power generation.
The slow oxygen reduction reaction in concentrated phosphoric acid remains a major technological challenge for future development of HT-PEMFCs. The slow reaction rate is believed to be related to strong adsorption of phosphoric acid species on the surface of the platinum catalyst. It is generally accepted that adsorption of molecular or anionic species from the concentrated phosphoric acid electrolyte hinders ORR by blocking active sites on the catalyst surface. To gain a better understanding of the adsorption mechanisms we conduct systematic studies employing various types of perfluoroalkylated derivatives of phosphoric acid. We evaluated these model electrolytes for their adsorption behavior and influence on ORR on a polycrystalline platinum surface.

Representative Research Field Alternative Storage

Dr. Ludwig Jörissen

Research Departments Electrochemical Fundamentals - ZSW

Contact details

+49 731 9530 605

Prospective Sustainability Assessment and decision support for new Energy Materials – use cases from battery research
Baumann, M.; Erakca, M.; Ersoy, H.; Pinto-Bautista, S.; Mandade, P.; Jasper, F.; Weil, M.
2023. The Future of Energy Materials: EERA EM4I & AMI2030 Joint Workshop (2023), Online, 13.–14. März 2023 
Closing gaps in LCA of lithium-ion batteries: LCA of lab-scale cell production with new primary data
Erakca, M.; Pinto Bautista, S.; Moghaddas, S.; Baumann, M.; Bauer, W.; Leuthner, L.; Weil, M.
2023. Journal of Cleaner Production, 384, Art.-Nr.: 135510. doi:10.1016/j.jclepro.2022.135510VolltextVolltext der Publikation als PDF-Dokument
Development of a Mg/O ReaxFF Potential to describe the Passivation Processes in Magnesium‐Ion Batteries
Fiesinger, F.; Gaissmaier, D.; van den Borg, M.; Beßner, J.; van Duin, A. C. T.; Jacob, T.
2023. ChemSusChem, 16 (3), Art.-Nr.: e202201821. doi:10.1002/cssc.202201821VolltextVolltext der Publikation als PDF-Dokument
Guest Ion-Dependent Reaction Mechanisms of New Pseudocapacitive MgV(PO)/Carbon Composite as Negative Electrode for Monovalent-Ion Batteries
Fu, Q.; Schwarz, B.; Ding, Z.; Sarapulova, A.; Weidler, P. G.; Missyul, A.; Etter, M.; Welter, E.; Hua, W.; Knapp, M.; Dsoke, S.; Ehrenberg, H.
2023. Advanced Science, Art.-Nr.: 2207283. doi:10.1002/advs.202207283VolltextVolltext der Publikation als PDF-Dokument
Asymptotic properties of one-layer artificial neural networks with sparse connectivity
Hirsch, C.; Neumann, M.; Schmidt, V.
2023. Statistics & Probability Letters, 193, Art.-Nr.: 109698. doi:10.1016/j.spl.2022.109698
P3 type layered oxide frameworks: An appealing family of insertion materials for K-ion batteries
Jha, P. K.; Pralong, V.; Fichtner, M.; Barpanda, P.
2023. Current Opinion in Electrochemistry, 38, Art.-Nr.: 101216. doi:10.1016/j.coelec.2023.101216
Investigation of SnS₂‐rGO Sandwich Structures as Negative Electrode for Sodium‐ion and Potassium‐ion Batteries
Li, C.; Pfeifer, K.; Luo, X.; Melinte, G.; Wang, J.; Zhang, Z.; Zhang, Y.; Dong, P.; Sarapulova, A.; Ehrenberg, H.; Dsoke, S.
2023. ChemSusChem, e202202281. doi:10.1002/cssc.202202281VolltextVolltext der Publikation als PDF-Dokument
Anion Storage Chemistry of Organic Cathodes for High‐Energy and High‐Power Density Divalent Metal Batteries
Xiu, Y.; Mauri, A.; Dinda, S.; Pramudya, Y.; Ding, Z.; Diemant, T.; Sarkar, A.; Wang, L.; Li, Z.; Wenzel, W.; Fichtner, M.; Zhao-Karger, Z.
2023. Angewandte Chemie International Edition, 62 (2), Art.: e202212339. doi:10.1002/anie.202212339VolltextVolltext der Publikation als PDF-Dokument
A Roadmap for Transforming Research to Invent the Batteries of the Future Designed within the European Large Scale Research Initiative BATTERY 2030+
Amici, J.; Asinari, P.; Ayerbe, E.; Barboux, P.; Bayle-Guillemaud, P.; Behm, R. J.; Berecibar, M.; Berg, E.; Bhowmik, A.; Bodoardo, S.; Castelli, I. E.; Cekic-Laskovic, I.; Christensen, R.; Clark, S.; Diehm, R.; Dominko, R.; Fichtner, M.; Franco, A. A.; Grimaud, A.; Guillet, N.; Hahlin, M.; Hartmann, S.; Heiries, V.; Hermansson, K.; Heuer, A.; Jana, S.; Jabbour, L.; Kallo, J.; Latz, A.; Lorrmann, H.; Løvvik, O. M.; Lyonnard, S.; Meeus, M.; Paillard, E.; Perraud, S.; Placke, T.; Punckt, C.; Raccurt, O.; Ruhland, J.; Sheridan, E.; Stein, H.; Tarascon, J.-M.; Trapp, V.; Vegge, T.; Weil, M.; Wenzel, W.; Winter, M.; Wolf, A.; Edström, K.
2022. Advanced Energy Materials, 12 (17), Art.-Nr.: 2102785. doi:10.1002/aenm.202102785VolltextVolltext der Publikation als PDF-Dokument
Comprehensive Approach to Investigate the De‐/Lithiation Mechanism of Fe‐Doped SnO₂ as Lithium‐Ion Anode Material
Asenbauer, J.; Wirsching, A.-L.; Lang, M.; Indris, S.; Eisenmann, T.; Mullaliu, A.; Birrozzi, A.; Hoefling, A.; Geiger, D.; Kaiser, U.; Schuster, R.; Bresser, D.
2022. Advanced Sustainable Systems, 6 (8), Artkl. Nr.: 2200102. doi:10.1002/adsu.202200102VolltextVolltext der Publikation als PDF-Dokument
Charging sustainable batteries
Bauer, C.; Burkhardt, S.; Dasgupta, N. P.; Ellingsen, L. A.-W.; Gaines, L. L.; Hao, H.; Hischier, R.; Hu, L.; Huang, Y.; Janek, J.; Liang, C.; Li, H.; Li, J.; Li, Y.; Lu, Y.-C.; Luo, W.; Nazar, L. F.; Olivetti, E. A.; Peters, J. F.; Rupp, J. L. M.; Weil, M.; Whitacre, J. F.; Xu, S.
2022. Nature Sustainability, 5 (3), 176–178. doi:10.1038/s41893-022-00864-1
Energy storage in future power grids - potential sustainability challenges
Baumann, M.; Ersoy, H.; Peters, J.; Weil, M.
2022. Bringing research and industry closer: Energy storage and CSP/CST (SUPEERA 2022), Almería, Spanien, 15.–16. November 2022 
Explorative MCDA of Sodium-Ion Battery Cathode Materials based on a sustainability Screening method
Baumann, M.; Häringer, M.; Schmidt, M.; Schneider, L.; Peters, J.; Bauer, W.; Binder, J. R.; Weil, M.
2022. 16th Society and Materials International Conference (SAM 2022), Online, 8.–9. November 2022 
High-Throughput Experimentation and Computational Freeway Lanes for Accelerated Battery Electrolyte and Interface Development Research
Benayad, A.; Diddens, D.; Heuer, A.; Krishnamoorthy, A. N.; Maiti, M.; Cras, F. L.; Legallais, M.; Rahmanian, F.; Shin, Y.; Stein, H.; Winter, M.; Wölke, C.; Yan, P.; Cekic-Laskovic, I.
2022. Advanced Energy Materials, 12 (17), Art.Nr.: 2102678. doi:10.1002/aenm.202102678VolltextVolltext der Publikation als PDF-Dokument
Managing FAIR Tribological Data Using Kadi4Mat
Brandt, N.; Garabedian, N. T.; Schoof, E.; Schreiber, P. J.; Zschumme, P.; Greiner, C.; Selzer, M.
2022. Data, 7 (2), Art.-Nr. 15. doi:10.3390/data7020015VolltextVolltext der Publikation als PDF-Dokument
Autonomous visual detection of defects from battery electrode manufacturing
Choudhary, N.; Clever, H.; Ludwigs, R.; Rath, M.; Gannouni, A.; Schmetz, A.; Hülsmann, T.; Sawodny, J.; Fischer, L.; Kampker, A.; Fleischer, J.; Stein, H. S.
2022. American Chemical Society (ACS). doi:10.26434/chemrxiv-2022-pvwj3VolltextVolltext der Publikation als PDF-Dokument
From high‐pressure β‐V 2 O 5 to κ‐Na x V 2 O 5 (x = 0.4 – 0.55): a structural, chemical and kinetic insight into a sodiated phase with a large interlayer space
Córdoba, R.; Goclon, J.; Sarapulova, A.; Fu, Q.; Maibach, J.; Dsoke, S.; Fauth, F.; Kuhn, A.; García-Alvarado, F.
2022. Applied Research, 2 (1), Art.Nr. e202200052. doi:10.1002/appl.202200052
Unravelling Charge Carrier Mobility in d₀ ‐Metal‐based Spinels
Dillenz, M.; Sotoudeh, M.; Glaser, C.; Janek, J.; Groß, A.; Euchner, H.
2022. Batteries & Supercaps, 5 (7), Art.-Nr. e202200164. doi:10.1002/batt.202200164VolltextVolltext der Publikation als PDF-Dokument
Closing the Gaps in LCA of LIBs: Review and LCA of Lab-scale Cell Production
Erakca, M.; Bautista, S. P.; Mogghadas, S.; Baumann, M.; Bauer, W.; Biasi, L. de; Weil, M.
2022. 32nd Society of Environmental Toxicology and Chemistry Europe : Annual Meeting (SETAC Europe 2022), Kopenhagen, Dänemark, 15.–19. Mai 2022 
Atomistic modeling of Li- and post-Li-ion batteries
Euchner, H.; Groß, A.
2022. Physical Review Materials, 6 (4), Article no: 040302. doi:10.1103/PhysRevMaterials.6.040302
Rechargeable Batteries of the Future—The State of the Art from a BATTERY 2030+ Perspective
Fichtner, M.; Edström, K.; Ayerbe, E.; Berecibar, M.; Bhowmik, A.; Castelli, I. E.; Clark, S.; Dominko, R.; Erakca, M.; Franco, A. A.; Grimaud, A.; Horstmann, B.; Latz, A.; Lorrmann, H.; Meeus, M.; Narayan, R.; Pammer, F.; Ruhland, J.; Stein, H.; Vegge, T.; Weil, M.
2022. Advanced Energy Materials, 12 (17), 2102904. doi:10.1002/aenm.202102904VolltextVolltext der Publikation als PDF-Dokument
A Combined XPS and Computational Study of the Chemical Reduction of BMP‐TFSI by Lithium
Forster-Tonigold, K.; Buchner, F.; Bansmann, J.; Behm, R. J.; Groß, A.
2022. Batteries & Supercaps, 5 (12), Art._Nr: e202200484. doi:10.1002/batt.202200484
A Combined XPS and Computational Study of the Chemical Reduction of BMP‐TFSI by Lithium
Forster-Tonigold, K.; Buchner, F.; Bansmann, J.; Behm, R. J.; Groß, A.
2022. Batteries and Supercaps, 5 (12), Art.Nr. e202200307. doi:10.1002/batt.202200307VolltextVolltext der Publikation als PDF-Dokument
Preferred Site Occupation of Doping Cation and Its Impact on the Local Structure of V₂O₅
Fu, Q.; Hansen, A.-L.; Schwarz, B.; Sarapulova, A.; Zhu, L.; Tian, G.; Etter, M.; Missyul, A.; Welter, E.; Murzin, V.; Indris, S.; Azmi, R.; Knapp, M.; Dsoke, S.; Ehrenberg, H.
2022. Chemistry of Materials, 34 (22), 9844–9853. doi:10.1021/acs.chemmater.2c01695VolltextVolltext der Publikation als PDF-Dokument
High‐Voltage Aqueous Mg‐Ion Batteries Enabled by Solvation Structure Reorganization
Fu, Q.; Wu, X.; Luo, X.; Indris, S.; Sarapulova, A.; Bauer, M.; Wang, Z.; Knapp, M.; Ehrenberg, H.; Wei, Y.; Dsoke, S.
2022. Advanced functional materials, 32 (16), Art.Nr.: 2110674. doi:10.1002/adfm.202110674VolltextVolltext der Publikation als PDF-Dokument
Detailed Structural and Electrochemical Comparison between High Potential Layered P2-NaMnNi and Doped P2-NaMnNiMg Oxides
Gauckler, C.; Dillenz, M.; Maroni, F.; Pfeiffer, L. F.; Biskupek, J.; Sotoudeh, M.; Fu, Q.; Kaiser, U.; Dsoke, S.; Euchner, H.; Axmann, P.; Wohlfahrt-Mehrens, M.; Groß, A.; Marinaro, M.
2022. ACS Applied Energy Materials, 5 (11), 13735–13750. doi:10.1021/acsaem.2c02402
Novel Phosphonium-Based Ionic Liquid Electrolytes for Battery Applications
Hofmann, A.; Rauber, D.; Wang, T.-M.; Hempelmann, R.; Kay, C. W. M.; Hanemann, T.
2022. Molecules, 27 (15), Art.Nr.: 4729. doi:10.3390/molecules27154729VolltextVolltext der Publikation als PDF-Dokument
Dataset of propylene carbonate based liquid electrolyte mixtures for sodium-ion cells
Hofmann, A.; Wang, Z.; Bautista, S. P.; Weil, M.; Müller, F.; Löwe, R.; Schneider, L.; Mohsin, I. U.; Hanemann, T.
2022. Data in Brief, 40, Article no: 107775. doi:10.1016/j.dib.2021.107775VolltextVolltext der Publikation als PDF-Dokument
Advancing the Sustainability of Batteries. A Tongji University/Nature Sustainability Expert Panel Report
Huang, Y.; Bauer, C.; Burkhardt, S.; Dasgupta, N. P.; Ellingsen, L. A.-W.; Gaines, L. L.; Hao, H.; Hischier, R.; Hu, L.; Huang, Y.-M.; Janek, J.; Liang, C.; Li, H.; Li, J.; Li, Y.; Lu, Y.-C.; Luo, W.; Nazar, L. F.; Olivetti, E. A.; Peters, J. F.; Rupp, J. L. M.; Weil, M.; Whitacre, J. F.; Xu, S.
2022. Tongji University 
Development of Magnesium Borate Electrolytes: Explaining the Success of Mg[B(hfip)4]2 Salt
Jankowski, P.; Li, Z.; Zhao-Karger, Z.; Diemant, T.; Fichtner, M.; Vegge, T.; Lastra, J. M. G.
2022. Energy storage materials, 45, 1133–1143. doi:10.1016/j.ensm.2021.11.012VolltextVolltext der Publikation als PDF-Dokument
Poly(ethylene oxide)-Based Electrolytes for Solid-State Potassium Metal Batteries with a Prussian Blue Positive Electrode
Khudyshkina, A. D.; Morozova, P. A.; Butzelaar, A. J.; Hoffmann, M.; Wilhelm, M.; Theato, P.; Fedotov, S. S.; Jeschull, F.
2022. ACS Applied Polymer Materials, 4 (4), 2734–2746. doi:10.1021/acsapm.2c00014VolltextVolltext der Publikation als PDF-Dokument
Resolving the Role of Configurational Entropy in Improving Cycling Performance of Multicomponent Hexacyanoferrate Cathodes for Sodium‐Ion Batteries
Ma, Y.; Hu, Y.; Pramudya, Y.; Diemant, T.; Wang, Q.; Goonetilleke, D.; Tang, Y.; Zhou, B.; Hahn, H.; Wenzel, W.; Fichtner, M.; Ma, Y.; Breitung, B.; Brezesinski, T.
2022. Advanced Functional Materials, 32 (34), Art.Nr. 2202372. doi:10.1002/adfm.202202372VolltextVolltext der Publikation als PDF-Dokument
Sodiation of hard carbon: how separating enthalpy and entropy contributions can find transitions hidden in the voltage profile
Mercer, M.; Affleck, S.; Gavilan-Arriazu, E. M.; Zulke, A. A.; Maughan, P. A.; Trivedi, S.; Fichtner, M.; Reddy Munnangi, A.; Leiva, E. P. M.; Hoster, H. E.
2022. ChemPhysChem, 23 (5), e202100748. doi:10.1002/cphc.202100748
Heat generation and degradation mechanisms studied on Na₃V₂(PO₄)₃/C positive electrode material in full pouch / coin cell assembly
Mohsin, I. U.; Schneider, L.; Häringer, M.; Ziebert, C.; Rohde, M.; Bauer, W.; Ehrenberg, H.; Seifert, H. J.
2022. Journal of Power Sources, 545, Art.-Nr.: 231901. doi:10.1016/j.jpowsour.2022.231901VolltextVolltext der Publikation als PDF-Dokument
3D microstructure characterization of polymer battery electrodes by statistical image analysis based on synchrotron X-ray tomography
Neumann, M.; Ademmer, M.; Osenberg, M.; Hilger, A.; Wilde, F.; Muench, S.; Hager, M. D.; Schubert, U. S.; Manke, I.; Schmidt, V.
2022. Journal of Power Sources, 542, 231783. doi:10.1016/j.jpowsour.2022.231783VolltextVolltext der Publikation als PDF-Dokument
Layered P2-NaMnNiO Cathode Materials For Sodium-Ion Batteries: Synthesis, Electrochemistry and Influence of Ambient Storage
Pfeiffer, L. F.; Jobst, N.; Gauckler, C.; Lindén, M.; Marinaro, M.; Passerini, S.; Wohlfahrt-Mehrens, M.; Axmann, P.
2022. Frontiers in Energy Research, 10, Art.-Nr.: 910842. doi:10.3389/fenrg.2022.910842VolltextVolltext der Publikation als PDF-Dokument
Visualization of structural changes and degradation of porphyrin-based battery electrodes
Philipp, T.; Neusser, G.; Abouzari-Lotf, E.; Shakouri, S.; Wilke, F. D. H.; Fichtner, M.; Ruben, M.; Mundszinger, M.; Biskupek, J.; Kaiser, U.; Scheitenberger, P.; Lindén, M.; Kranz, C.
2022. Journal of Power Sources, 522, Art.-Nr.: 231002. doi:10.1016/j.jpowsour.2022.231002
Quantitative Comparison of Different Approaches for Reconstructing the Carbon‐Binder Domain from Tomographic Image Data of Cathodes in Lithium‐Ion Batteries and Its Influence on Electrochemical Properties
Prifling, B.; Neumann, M.; Hein, S.; Danner, T.; Heider, E.; Hoffmann, A.; Rieder, P.; Hilger, A.; Osenberg, M.; Manke, I.; Wohlfahrt-Mehrens, M.; Latz, A.; Schmidt, V.
2022. Energy Technology, Art.-Nr.: 2200784. doi:10.1002/ente.202200784VolltextVolltext der Publikation als PDF-Dokument
Enabling Modular Autonomous Feedback-Loops in Materials Science through Hierarchical Experimental Laboratory Automation and Orchestration
Rahmanian, F.; Flowers, J.; Guevarra, D.; Richter, M.; Fichtner, M.; Donnely, P.; Gregoire, J. M.; Stein, H. S.
2022. Advanced Materials Interfaces, 8 (9), 2101987. doi:10.1002/admi.202101987VolltextVolltext der Publikation als PDF-Dokument
One-shot active learning for globally optimal battery electrolyte conductivity
Rahmanian, F.; Vogler, M.; Wölke, C.; Yan, P.; Winter, M.; Cekic-Laskovic, I.; Stein, H. S.
2022. American Chemical Society (ACS). doi:10.26434/chemrxiv-2022-1z8gnVolltextVolltext der Publikation als PDF-Dokument
Investigation of the Anode-Electrolyte Interface in a Magnesium Full-Cell with Fluorinated Alkoxyborate-Based Electrolyte
Roy, A.; Bhagavathi Parambath, V.; Diemant, T.; Neusser, G.; Kranz, C.; Behm, R. J.; Li, Z.; Zhao-Karger, Z.; Fichtner, M.
2022. Batteries and Supercaps, 5 (4), Art.-Nr.: e202100305. doi:10.1002/batt.202100305VolltextVolltext der Publikation als PDF-Dokument
Transport Properties in Electrodes for Lithium-Ion Batteries: Comparison of Compact versus Porous NCM Particles
Schneider, L.; Klemens, J.; Herbst, E. C.; Müller, M.; Scharfer, P.; Schabel, W.; Bauer, W.; Ehrenberg, H.
2022. Journal of The Electrochemical Society, 169 (10), Art.-Nr.: 100553. doi:10.1149/1945-7111/ac9c37VolltextVolltext der Publikation als PDF-Dokument
Suitability of Carbazolyl Hauser and Turbo‐Hauser Bases as Magnesium‐Based Electrolytes
Schüler, P.; Sengupta, S.; Zaubitzer, S.; Fiesinger, F.; Dongmo, S.; Görls, H.; Wohlfahrt-Mehrens, M.; Borg, M.; Gaissmaier, D.; Krieck, S.; Marinaro, M.; Jacob, T.; Westerhausen, M.
2022. European Journal of Inorganic Chemistry, 2022 (17), Art.-Nr.: e202200149. doi:10.1002/ejic.202200149VolltextVolltext der Publikation als PDF-Dokument
From materials discovery to system optimization by integrating combinatorial electrochemistry and data science
Stein, H. S.; Sanin, A.; Rahmanian, F.; Zhang, B.; Vogler, M.; Flowers, J. K.; Fischer, L.; Fuchs, S.; Choudhary, N.; Schroeder, L.
2022. Current Opinion in Electrochemistry, 35, Art.-Nr.: 101053. doi:10.1016/j.coelec.2022.101053
Brokering between tenants for an international materials acceleration platform
Vogler, M.; Busk, J.; Hajiyani, H.; Jørgensen, P. B.; Safaei, N.; Castelli, I.; Ramírez, F. F.; Carlsson, J.; Pizzi, G.; Clark, S.; Hanke, F.; Bhowmik, A.; Stein, H. S.
2022. American Chemical Society (ACS). doi:10.26434/chemrxiv-2022-grgrdVolltextVolltext der Publikation als PDF-Dokument
P2-type layered high-entropy oxides as sodium-ion cathode materials
Wang, J.; Dreyer, S. L.; Wang, K.; Ding, Z.; Diemant, T.; Karkera, G.; Ma, Y.; Sarkar, A.; Zhou, B.; Gorbunov, M. V.; Omar, A.; Mikhailova, D.; Presser, V.; Fichtner, M.; Hahn, H.; Brezesinski, T.; Breitung, B.; Wang, Q.
2022. Materials Futures, 1 (3), Art.Nr. 035104. doi:10.1088/2752-5724/ac8ab9VolltextVolltext der Publikation als PDF-Dokument
Sustainability Implications of Emerging Batteries – Prospective LCA of Sodium and Magnesium Batteries
Weil, M.; Baumann, M.; Binder, J.; Tomasini, C.; Peters, J.; Erakca, M.; Pinto, S.; Liu, H.; Mandade, P.; Ersoy, H.
2022. 15th International Conference on Modern Materials and Technologies (CIMTEC 2022), Perugia, Italien, 20.–24. Juni 2022 
Kreislaufwirtschaft Batterie: Recycling von gegenwärtige und zukünftige Batterien
Weil, M.; Baumann, M.; Peters, J.; Erakca, M.; Pinto, S.; Liu, H.; Mandade, P.; Ersoy, H.
Kreislaufwirtschaft Batterie: Recycling von gegenwärtige und zukünftige Batterien
Weil, M.; Baumann, M.; Peters, J.; Erakca, M.; Pinto, S.; Liu, H.; Mandade, P.; Ersoy, H.
2022. ZAWIW Herbstakademie 2022 (2022), Universität Ulm, 26.–29. September 2022 
Nachhaltigkeitsaspekte des Recyclings heutiger und zukünftiger Batterien
Weil, M.; Baumann, M.; Peters, J.; Erakca, M.; Pinto, S.; Liu, H.; Mandade, P.; Ersoy, H.
2022. 60th Tutzing-Symposion: Circular Economy - Schritte in die Zukunft (2022), Evangelische Akademie Tutzing, 16.–18. Mai 2022 
Lebenszyklusorientierte Nachhaltigkeitsanalysen - Life Cycle Assessment von Batterien und Umweltaspekte des Recyclings
Weil, M.; Baumann, M.; Peters, J.; Erakca, M.; Pinto, S.; Liu, H.; Mandade, P.; Ersoy, H.
2022. Webinar „Energiewende: Kritische Rohstoffe für Batterien“ (2022), Online, 17. März 2022 
Data issues for sustainability assessment of present and emerging battery systems
Weil, M.; Baumann, M.; Peters, J.; Erakca, M.; Pinto, S.; Liu, H.; Mandade, P.; Jasper, F.; Thomas Kochuveedu, S.; Bahmei, F.; Ersoy, H.
2022. StoRIES Webinar: FAIR and open data for environmental, techno-economic and socio-economic assessments for Energy Storage (2022), Online, 27. Oktober 2022 
Lithium Batterien - Rohstoffbedarf & Recycling und die Suche nach Post-Lithium Batterien
Weil, M.; Baumann, M.; Peters, J.; Erakca, M.; Pinto, S.; Liu, H.; Mandade, P.; Kochuveedu, S. T.; Bahmei, F.; Ersoy, H.
2022. IWAR Vortragsreihe - Neues aus der Umwelttechnik (2022), Online, 14. November 2022 
A Novel and Highly Efficient Indolyl‐Based Electrolyte for Mg Batteries
Zaubitzer, S.; Dongmo, S.; Schüler, P.; Krieck, S.; Fiesinger, F.; Gaissmaier, D.; van den Borg, M.; Jacob, T.; Westerhausen, M.; Wohlfahrt-Mehrens, M.; Marinaro, M.
2022. Energy Technology, 10 (8), Art.-Nr.: 2200440. doi:10.1002/ente.202200440
Study on Na₂V₀₆₇Mn₀₃₃Ti(PO₄)₃ electrodes with ultralow voltage hysteresis for high performance sodium-ion batteries
Zhao, Z.; Darma, M. S. D.; Tian, G.; Luo, X.; Zhao, E.; Wang, B.-T.; Zhao, J.; Hua, W.; Zhao, X.; Wang, Y.; Ehrenberg, H.; Dsoke, S.
2022. Chemical Engineering Journal, 444, Article no: 136608. doi:10.1016/j.cej.2022.136608
A Self-Conditioned Metalloporphyrin as a Highly Stable Cathode for Fast Rechargeable Magnesium Batteries
Abouzari-Lotf, E.; Azmi, R.; Li, Z.; Shakouri, S.; Chen, Z.; Zhao-Karger, Z.; Klyatskaya, S.; Maibach, J.; Ruben, M.; Fichtner, M.
2021. ChemSusChem, 14 (8), 1840–1846. doi:10.1002/cssc.202100340VolltextVolltext der Publikation als PDF-Dokument
Na₃V₂(PO₄)₃ - A Highly Promising Anode and Cathode Material for Sodium-Ion Batteries
Akçay, T.; Häringer, M.; Pfeifer, K.; Anhalt, J.; Binder, J. R.; Dsoke, S.; Kramer, D.; Mönig, R.
2021. ACS applied energy materials, 4 (11), 12688–12695. doi:10.1021/acsaem.1c02413VolltextVolltext der Publikation als PDF-Dokument
A Brief review of supercapacitors as a novel energy storage device
Bahmei, F.; Bahramifar, N.; Ghasemi, S.; Younesi, H.; Weil, M.
2021. Fuel, Elsevier 
The challenges for a sustainable battery ecosystem
Bardé, F.; Weil, M.; Borbujo, Y. C.; Edström, K.; Martin Frax, L.; Kiuru, J.; Rizo-Martin, J.; Metz, P. de; Pettit, C.; Poliscanova, J.; Ramon, N. G.; Santos, C.; Olli, S.; Garcia, M.
2021. Batteries European Patnership Association Meeting - TWG5: Sustianability (BEPA 2021), Online, 27. September 2021 
The challenges for a sustainable battery ecosystem
Bardé, F.; Weil, M.; Borbujo, Y. C.; Edström, K.; Martin Frax, L.; Kiuru, J.; Rizo-Martin, J.; Metz, P. de; Pettit, C.; Poliscanova, J.; Ramon, N. G.; Santos, C.; Olli, S.; Garcia, M.
2021. Batteries Europe online workshop: A Holistic Approach to Battery Safety and Sustainability for Europe (2021), Online, 15. Juni 2021 
Comparative patent analysis for the identification of global research trends for the case of battery storage, hydrogen and bioenergy
Baumann, M.; Domnik, T.; Haase, M.; Wulf, C.; Emmerich, P.; Rösch, C.; Zapp, P.; Naegler, T.; Weil, M.
2021. Technological forecasting and social change, 165, Art.-Nr.: 120505. doi:10.1016/j.techfore.2020.120505VolltextVolltext der Publikation als PDF-Dokument
Prospective Life Cycle Assessment of a Model Magnesium Battery
Bautista, S. P.; Weil, M.; Baumann, M.; Tomasini Montenegro, C.
2021. Energy technology, 9 (4), Art.-Nr. 2000964. doi:10.1002/ente.202000964VolltextVolltext der Publikation als PDF-Dokument
Sodium Cyclopentadienide as a New Type of Electrolyte for Sodium Batteries
Binder, M.; Mandl, M.; Zaubitzer, S.; Wohlfahrt-Mehrens, M.; Passerini, S.; Böse, O.; Danzer, M. A.; Marinaro, M.
2021. ChemElectroChem, 8 (2), 365–369. doi:10.1002/celc.202001290VolltextVolltext der Publikation als PDF-Dokument
Theoretical studies on the initial oxidation of metallic lithium anodes
Borg, M. van den; Gaissmaier, D.; Knobbe, E.; Fantauzzi, D.; Jacob, T.
2021. Applied Surface Science, 555, Art.-Nr.: 149447. doi:10.1016/j.apsusc.2021.149447
Kadi4Mat : A Research Data Infrastructure for Materials Science
Brandt, N.; Griem, L.; Herrmann, C.; Schoof, E.; Tosato, G.; Zhao, Y.; Zschumme, P.; Selzer, M.
2021. Data science journal, 20 (1), Art.-Nr.: 8. doi:10.5334/dsj-2021-008VolltextVolltext der Publikation als PDF-Dokument
Multiphase-field modeling of spinodal decomposition during intercalation in an Allen-Cahn framework
Daubner, S.; Kubendran Amos, P. G.; Schoof, E.; Santoki, J.; Schneider, D.; Nestler, B.
2021. Physical review materials, 5 (3), Article no: 035406. doi:10.1103/PhysRevMaterials.5.035406VolltextVolltext der Publikation als PDF-Dokument
On the Electrochemical Insertion of Mg2+in Na7V4(P2O7)4(PO4) and Na3V2(PO4)3 Host Materials
Dongmo, S.; Maroni, F.; Gauckler, C.; Marinaro, M.; Wohlfahrt-Mehrens, M.
2021. Journal of the Electrochemical Society, 168 (12), Art. Nr.: 120541. doi:10.1149/1945-7111/ac412b
Modeling of Electron‐Transfer Kinetics in Magnesium Electrolytes: Influence of the Solvent on the Battery Performance
Drews, J.; Jankowski, P.; Häcker, J.; Li, Z.; Danner, T.; García Lastra, J. M.; Vegge, T.; Wagner, N.; Friedrich, K. A.; Zhao-Karger, Z.; Fichtner, M.; Latz, A.
2021. ChemSusChem, 14 (21), 4820–4835. doi:10.1002/cssc.202101498VolltextVolltext der Publikation als PDF-Dokument
Energy flow analysis of lab-scale LIB cell production as a blueprint for environmental SIB assessment
Erakca, M.; Baumann, M.; Bauer, W.; Biasi, L. de; Bold, B.; Weil, M.
2021. 1st International Workshop on Post-Lithium Research: Women in Focus (2021), Online, 27.–28. Juli 2021 
Energy Flow Analysis of Laboratory Scale Lithium-Ion Battery Cell Production
Erakca, M.; Baumann, M.; Bauer, W.; Biasi, L. de; Hofmann, J.; Bold, B.; Weil, M.
2021. iScience, 24 (5), Article: 102437. doi:10.1016/j.isci.2021.102437VolltextVolltext der Publikation als PDF-Dokument
Energieflussanalyse der Produktion von Lithium-Ionen Batteriezellen im Labormaßstab mit Vergleich verschiedener Produktionsskalen
Erakca, M.; Baumann, M.; Bauer, W.; Biasi, L. de; Ruhland, J.; Bold, B.; Weil, M.
2021. STORENERGY Congress (2021), Online, 17.–18. November 2021 
Challenges and Pitfalls of Conducting Prospective LCA for Emerging Technologies: The Example of Metal-Free Organic Batteries
Erakca, M.; Weil, M.; Bresser, D.; Bautista, S. P.
2021. 15th Conference Society And Materials (EcoSD 2021), Online, 10.–11. Mai 2021 
In operando study of orthorhombic V₂O₅ as positive electrode materials for K-ion batteries
Fu, Q.; Sarapulova, A.; Zhu, L.; Melinte, G.; Missyul, A.; Welter, E.; Luo, X.; Knapp, M.; Ehrenberg, H.; Dsoke, S.
2021. Journal of Energy Chemistry, 62, 627–636. doi:10.1016/j.jechem.2021.04.027VolltextVolltext der Publikation als PDF-Dokument
Electrochemical performance and reaction mechanism investigation of V₂O₅ positive electrode material for aqueous rechargeable zinc batteries
Fu, Q.; Wang, J.; Sarapulova, A.; Zhu, L.; Missyul, A.; Welter, E.; Luo, X.; Ding, Z.; Knapp, M.; Ehrenberg, H.; Dsoke, S.
2021. Journal of materials chemistry / A, 9 (31), 16776–16786. doi:10.1039/D1TA03518EVolltextVolltext der Publikation als PDF-Dokument
Accelerated Kinetics Revealing Metastable Pathways of Magnesiation-Induced Transformations in MnO Polymorphs
Hatakeyama, T.; Li, H.; Okamoto, N. L.; Shimokawa, K.; Kawaguchi, T.; Tanimura, H.; Imashuku, S.; Fichtner, M.; Ichitsubo, T.
2021. Chemistry of Materials, 33 (17), 6983–6996. doi:10.1021/acs.chemmater.1c02011VolltextVolltext der Publikation als PDF-Dokument
Multiphase-field model for surface diffusion and attachment kinetics in the grand-potential framework
Hoffrogge, P. W.; Mukherjee, A.; Nani, E. S.; Amos, P. G. K.; Wang, F.; Schneider, D.; Nestler, B.
2021. Physical review / E, 103 (3), Article no: 033307. doi:10.1103/PhysRevE.103.033307VolltextVolltext der Publikation als PDF-Dokument
Comprehensive characterization of propylene carbonate based liquid electrolyte mixtures for sodium-ion cells
Hofmann, A.; Wang, Z.; Bautista, S. P.; Weil, M.; Müller, F.; Löwe, R.; Schneider, L.; Mohsin, I. U.; Hanemann, T.
2021. Electrochimica acta, 403, Art.Nr.: 139670. doi:10.1016/j.electacta.2021.139670VolltextVolltext der Publikation als PDF-Dokument
Investigation of Parameters Influencing the Producibility of Anodes for Sodium-Ion Battery Cells
Hofmann, J.; Wurba, A.-K.; Bold, B.; Maliha, S.; Schollmeyer, P.; Fleischer, J.; Klemens, J.; Scharfer, P.; Schabel, W.
2021. Production at the leading edge of technology – Proceedings of the 10th Congress of the German Academic Association for Production Technology (WGP), Dresden, 23-24 September 2020. Ed.: B.-A. Behrens, 171–181, Springer. doi:10.1007/978-3-662-62138-7_18
Polyoxometalate Modified Separator for Performance Enhancement of Magnesium–Sulfur Batteries
Ji, Y.; Liu-Théato, X.; Xiu, Y.; Indris, S.; Njel, C.; Maibach, J.; Ehrenberg, H.; Fichtner, M.; Zhao-Karger, Z.
2021. Advanced Functional Materials, 31 (26), Art.-Nr.: 2100868. doi:10.1002/adfm.202100868VolltextVolltext der Publikation als PDF-Dokument
Online adaptive quantum characterization of a nuclear spin
Joas, T.; Schmitt, S.; Santagati, R.; Gentile, A. A.; Bonato, C.; Laing, A.; McGuinness, L. P.; Jelezko, F.
2021. npj Quantum information, 7 (1), 56. doi:10.1038/s41534-021-00389-zVolltextVolltext der Publikation als PDF-Dokument
Performance Study of MXene/Carbon Nanotube Composites for Current Collector‐ and Binder‐Free Mg–S Batteries
Kaland, H.; Håskjold Fagerli, F.; Hadler-Jacobsen, J.; Zhao-Karger, Z.; Fichtner, M.; Wiik, K.; Wagner, N. P.
2021. ChemSusChem, 14 (8), 1864–1873. doi:10.1002/cssc.202100173VolltextVolltext der Publikation als PDF-Dokument
Recent developments and future perspectives of anionic batteries
Karkera, G.; Reddy, M. A.; Fichtner, M.
2021. Journal of power sources, 481, Art.-Nr. 228877. doi:10.1016/j.jpowsour.2020.228877
Establishing a Stable Anode–Electrolyte Interface in Mg Batteries by Electrolyte Additive
Li, Z.; Diemant, T.; Meng, Z.; Xiu, Y.; Reupert, A.; Wang, L.; Fichtner, M.; Zhao-Karger, Z.
2021. ACS applied materials & interfaces, 13 (28), 33123–33132. doi:10.1021/acsami.1c08476VolltextVolltext der Publikation als PDF-Dokument
Simulating mechanical wave propagation within the framework of phase-field modelling
Liu, X.; Schneider, D.; Daubner, S.; Nestler, B.
2021. Computer methods in applied mechanics and engineering, 381, Article: 113842. doi:10.1016/j.cma.2021.113842
An Alternative Charge-Storage Mechanism for High-Performance Sodium-Ion and Potassium-Ion Anodes
Ma, Y.; Ma, Y.; Euchner, H.; Liu, X.; Zhang, H.; Qin, B.; Geiger, D.; Biskupek, J.; Carlsson, A.; Kaiser, U.; Groß, A.; Indris, S.; Passerini, S.; Bresser, D.
2021. ACS Energy Letters, 6 (3), 915–924. doi:10.1021/acsenergylett.0c02365
Perspective on ultramicroporous carbon as sulphur host for Li–S batteries
Maria Joseph, H.; Fichtner, M.; Munnangi, A. R.
2021. Journal of Energy Chemistry, 59, 242–256. doi:10.1016/j.jechem.2020.11.001
Surface Engineering of a Mg Electrode via a New Additive to Reduce Overpotential
Meng, Z.; Li, Z.; Wang, L.; Diemant, T.; Bosubabu, D.; Tang, Y.; Berthelot, R.; Zhao-Karger, Z.; Fichtner, M.
2021. ACS applied materials & interfaces, 13 (31), 37044–37051. doi:10.1021/acsami.1c07648VolltextVolltext der Publikation als PDF-Dokument
The metamorphosis of rechargeable magnesium batteries
Mohtadi, R.; Tutusaus, O.; Arthur, T. S.; Zhao-Karger, Z.; Fichtner, M.
2021. Joule, 5 (3), 581–617. doi:10.1016/j.joule.2020.12.021
Structural evolution of a PtRu catalyst in the oxidation of an organic molecule
Mueller, J. E.; Hoffmannová, H.; Hiratoko, T.; Krtil, P.; Jacob, T.
2021. Journal of Catalysis, 398, 89–101. doi:10.1016/j.jcat.2021.04.001
Structure-Property Relation of Trimethyl Ammonium Ionic Liquids for Battery Applications
Rauber, D.; Hofmann, A.; Philippi, F.; Kay, C. W. M.; Zinkevich, T.; Hanemann, T.; Hempelmann, R.
2021. Applied Sciences, 11 (12), 5679. doi:10.3390/app11125679VolltextVolltext der Publikation als PDF-Dokument
Degradation Effects in Metal-Sulfur Batteries
Richter, R.; Häcker, J.; Zhao-Karger, Z.; Danner, T.; Wagner, N.; Fichtner, M.; Friedrich, K. A.; Latz, A.
2021. ACS Applied Energy Materials, 4 (3), 2365–2376. doi:10.1021/acsaem.0c02888
Ionic and Thermal Transport in Na-Ion-Conducting Ceramic Electrolytes
Rohde, M.; Mohsin, I. U. I.; Ziebert, C.; Seifert, H. J.
2021. International journal of thermophysics, 42 (10), Art.-Nr.: 136. doi:10.1007/s10765-021-02886-xVolltextVolltext der Publikation als PDF-Dokument
Investigation of “NaCoTiO” as a multi-phase positive electrode material for sodium batteries
Sabi, N.; Sarapulova, A.; Indris, S.; Dsoke, S.; Trouillet, V.; Mereacre, L.; Ehrenberg, H.; Saadoune, I.
2021. Journal of power sources, 481, Article: 229120. doi:10.1016/j.jpowsour.2020.229120
Effect of tortuosity, porosity, and particle size on phase-separation dynamics of ellipsoid-like particles of porous electrodes: Cahn-Hilliard-type phase-field simulations
Santoki, J.; Daubner, S.; Schneider, D.; Kamlah, M.; Nestler, B.
2021. Modelling and simulation in materials science and engineering, 29 (6), Art.Nr. 065010. doi:10.1088/1361-651X/ac11bc
Mechanism of Magnesium Transport in Spinel Chalcogenides
Sotoudeh, M.; Dillenz, M.; Groß, A.
2021. Advanced Energy and Sustainability Research, 2 (12), Article no: 2100113. doi:10.1002/aesr.202100113VolltextVolltext der Publikation als PDF-Dokument
Phase-sensitive quantum spectroscopy with high-frequency resolution
Staudenmaier, N.; Schmitt, S.; McGuinness, L. P.; Jelezko, F.
2021. Physical Review A, 104 (2), Art.-Nr.: L020602. doi:10.1103/PhysRevA.104.L020602
High Entropy and Low Symmetry: Triclinic High-Entropy Molybdates
Stenzel, D.; Issac, I.; Wang, K.; Azmi, R.; Singh, R.; Jeong, J.; Najib, S.; Bhattacharya, S. S.; Hahn, H.; Brezesinski, T.; Schweidler, S.; Breitung, B.
2021. Inorganic chemistry, 60 (1), 115–123. doi:10.1021/acs.inorgchem.0c02501VolltextVolltext der Publikation als PDF-Dokument
ZnS nanoparticles embedded in N-doped porous carbon xerogel as electrode materials for sodium-ion batteries
Tian, G.; Song, Y.; Luo, X.; Zhao, Z.; Han, F.; Chen, J.; Huang, H.; Tang, N.; Dsoke, S.
2021. Journal of alloys and compounds, 877, Art.-Nr.: 160299. doi:10.1016/j.jallcom.2021.160299
Environmental assessment of a new generation battery: The magnesium-sulfur system
Tomasini Montenegro, C.; Peters, J. F.; Baumann, M.; Zhao-Karger, Z.; Wolter, C.; Weil, M.
2021. Journal of energy storage, 35, 102053. doi:10.1016/j.est.2020.102053
Preparation of intergrown P/O-type biphasic layered oxides as high-performance cathodes for sodium ion batteries
Wang, K.; Wu, Z.-G.; Melinte, G.; Yang, Z.-G.; Sarkar, A.; Hua, W.; Mu, X.; Yin, Z.-W.; Li, J.-T.; Guo, X.-D.; Zhong, B.-H.; Kübel, C.
2021. Journal of Materials Chemistry A, 9 (22), 13151–13160. doi:10.1039/d1ta00627dVolltextVolltext der Publikation als PDF-Dokument
Prospective sustainability analysis of present and future battery systems
Weil, M.; Baumann, M.; Peters, J.; Erakca, M.; Ersoy, H.; Jasper, F.; Liu, H.; Bautista, S.
2021. Cambridge University Energy Technology Society : Term Cards - Michaelmas (CUETS 2021), Cambridge, Vereinigtes Königreich, 9. November 2021 
Prospective LCA of Emerging Technologies: Case Study of a Magnesium Battery
Weil, M.; Baumann, M.; Tomasini, C.; Bautista, S. P.
2021. International Baterry Production Conference (IBPC 2021 2021), Braunschweig, Deutschland, 1.–3. November 2021 
Recycling von Li-Ionen Batterien – Heute und Morgen
Weil, M.; Erakca, M.; Peters, J.; Baumann, M.; Bautista, S.; Liu, H.; Ersoy, H.; Mandade, P.; Yang, J.; Jasper, F.; Emmerich, P.; Grunwald, A.
2021. STORENERGY Congress (2021), Online, 17.–18. November 2021 
Recycling of Different Battery Types: A First LCA-Based Sustainability Perspective
Weil, M.; Peters, J.; Baumann, M.; Erakca, M.; Bautista, S.; Liu, H.; Ersoy, H.
2021. 11th Advanced automotive battery conference Europe (AABC 2021 2021), Online, 19.–20. Januar 2021 
Wiesner, E.; Bardé, F.; Weil, M.; Borbujo, Y. C.; Edström, K.; Kiuru, J.; Rizo-Martin, J.; Metz, P. de; Pettit, C.; Poliscanova, J.; Ramon, N. G.; Santos, C.
2021. Sustainability Task Force 
Nanodiamond Theranostic for Light-Controlled Intracellular Heating and Nanoscale Temperature Sensing
Wu, Y.; Alam, M. N. A.; Balasubramanian, P.; Ermakova, A.; Fischer, S.; Barth, H.; Wagner, M.; Raabe, M.; Jelezko, F.; Weil, T.
2021. Nano letters, 21 (9), 3780–3788. doi:10.1021/acs.nanolett.1c00043VolltextVolltext der Publikation als PDF-Dokument
Enhanced Potassium Storage Capability of Two-Dimensional Transition-Metal Chalcogenides Enabled by a Collective Strategy
Wu, Y.; Zhang, Q.; Xu, Y.; Xu, R.; Li, L.; Li, Y.; Zhang, C.; Zhao, H.; Wang, S.; Kaiser, U.; Lei, Y.
2021. ACS applied materials & interfaces, 13 (16), 18838–18848. doi:10.1021/acsami.1c01891
Nanoscale Dynamic Readout of a Chemical Redox Process Using Radicals Coupled with Nitrogen-Vacancy Centers in Nanodiamonds
Barton, J.; Gulka, M.; Tarabek, J.; Mindarava, Y.; Wang, Z.; Schimer, J.; Raabova, H.; Bednar, J.; Plenio, M. B.; Jelezko, F.; Nesladek, M.; Cigler, P.
2020. ACS Nano, 14 (10), 12938–12950. doi:10.1021/acsnano.0c04010
Investigation on the formation of Mg metal anode/electrolyte interfaces in Mg/S batteries with electrolyte additives
Bhaghavathi Parambath, V.; Zhao-Karger, Z.; Diemant, T.; Jäckle, M.; Li, Z.; Scherer, T.; Gross, A.; Behm, R. J.; Fichtner, M.
2020. Journal of materials chemistry / A, 8 (43), 22998–23010. doi:10.1039/d0ta05762b
Stripping and Plating a Magnesium Metal Anode in Bromide‐Based Non‐Nucleophilic Electrolytes
Dongmo, S.; Zaubitzer, S.; Schüler, P.; Krieck, S.; Jörissen, L.; Wohlfahrt-Mehrens, M.; Westerhausen, M.; Marinaro, M.
2020. ChemSusChem, 13 (13), 3530–3538. doi:10.1002/cssc.202000249
Modeling of Ion Agglomeration in Magnesium Electrolytes and its Impacts on Battery Performance
Drews, J.; Danner, T.; Jankowski, P.; Vegge, T.; García Lastra, J. M.; Liu, R.; Zhao-Karger, Z.; Fichtner, M.; Latz, A.
2020. ChemSusChem, 13 (14), 3599–3604. doi:10.1002/cssc.202001034VolltextVolltext der Publikation als PDF-Dokument
First results from in situ transmission electron microscopy studies of all-solid-state fluoride ion batteries
Fawey, M. H.; Chakravadhanula, V. S. K.; Munnangi, A. R.; Rongeat, C.; Hahn, H.; Fichtner, M.; Kübel, C.
2020. Journal of power sources, 466, Article: 228283. doi:10.1016/j.jpowsour.2020.228283
Phase transformation, charge transfer, and ionic diffusion of NaMnV(PO) in sodium-ion batteries: a combined first-principles and experimental study
Gao, X.; Lian, R.; He, L.; Fu, Q.; Indris, S.; Schwarz, B.; Wang, X.; Chen, G.; Ehrenberg, H.; Wei, Y.
2020. Journal of materials chemistry / A, 8 (34), 17477–17486. doi:10.1039/d0ta05929c
Dynamics of porous and amorphous magnesium borohydride to understand solid state Mg-ion-conductors
Heere, M.; Hansen, A.-L.; Payandeh, S. H.; Aslan, N.; Gizer, G.; Sørby, M. H.; Hauback, B. C.; Pistidda, C.; Dornheim, M.; Lohstroh, W.
2020. Scientific reports, 10 (1), Article No. 9080. doi:10.1038/s41598-020-65857-6VolltextVolltext der Publikation als PDF-Dokument
Investigation of N and S Co-doped Porous Carbon for Sodium-Ion Battery, Synthesized by Using Ammonium Sulphate for Simultaneous Activation and Heteroatom Doping
Ikram, S.; Dsoke, S.; Sarapulova, A.; Müller, M.; Rana, U. A.; Siddiqi, H. M.
2020. Journal of the Electrochemical Society, 167 (10), Article: 100531. doi:10.1149/1945-7111/ab9a01
Multi‐Electron Reactions enabled by Anion‐Based Redox Chemistry for High‐Energy Multivalent Rechargeable Batteries
Li, Z.; Vinayan, B. P.; Jankowski, P.; Njel, C.; Roy, A.; Vegge, T.; Maibach, J.; Lastra, J. M. G.; Fichtner, M.; Zhao-Karger, Z.
2020. Angewandte Chemie / International edition, 59 (28), 11483–11490. doi:10.1002/anie.202002560VolltextVolltext der Publikation als PDF-Dokument
A 3d-printed composite electrode for sustained electrocatalytic oxygen evolution
Liu, S.; Liu, R.; Gao, D.; Trentin, I.; Streb, C.
2020. Chemical communications, 56 (60), 8476–8479. doi:10.1039/D0CC03579C
Copper Porphyrin as a Stable Cathode for High‐Performance Rechargeable Potassium Organic Batteries
Lv, S.; Yuan, J.; Chen, Z.; Gao, P.; Shu, H.; Yang, X.; Liu, E.; Tan, S.; Ruben, M.; Zhao-Karger, Z.; Fichtner, M.
2020. ChemSusChem, 13 (9), 2286–2294. doi:10.1002/cssc.202000425
Understanding the mechanism of byproduct formation within operandosynchrotron techniques and its effects on the electrochemical performance of VO(B) nanoflakes in aqueous rechargeable zinc batteries
Pang, Q.; Zhao, H.; Lian, R.; Fu, Q.; Wei, Y.; Sarapulova, A.; Sun, J.; Wang, C.; Chen, G.; Ehrenberg, H.
2020. Journal of materials chemistry / A, 8 (19), 9567–9578. doi:10.1039/d0ta00858c
New maximally disordered – High entropy intermetallic phases (MD-HEIP) of the GdLaSnSbM (M=Li, Na, Mg): Synthesis, structure and some properties
Pavlyuk, V.; Balińska, A.; Rożdżyńska-Kiełbik, B.; Pavlyuk, N.; Dmytriv, G.; Stetskiv, A.; Indris, S.; Schwarz, B.; Ehrenberg, H.
2020. Journal of alloys and compounds, 838, Art. Nr.: 155643. doi:10.1016/j.jallcom.2020.155643
Choosing the right carbon additive is of vital importance for high-performance Sb-based Na-ion batteries
Pfeifer, K.; Arnold, S.; Budak, Ö.; Luo, X.; Presser, V.; Ehrenberg, H.; Dsoke, S.
2020. Journal of materials chemistry / A, 2020 (8), 6092–6104. doi:10.1039/D0TA00254BVolltextVolltext der Publikation als PDF-Dokument
Controlled‐Atmosphere Flame Fusion Single‐Crystal Growth of Non‐Noble fcc, hcp, and bcc Metals Using Copper, Cobalt, and Iron
Schuett, F. M.; Esau, D.; Varvaris, K. L.; Gelman, S.; Björk, J.; Rosen, J.; Jerkiewicz, G.; Jacob, T.
2020. Angewandte Chemie / International edition, 59 (32), 13246–13252. doi:10.1002/anie.201915389VolltextVolltext der Publikation als PDF-Dokument
A digital workflow for learning the reduced-order structure-property linkages for permeability of porous membranes
Yabansu, Y. C.; Altschuh, P.; Hötzer, J.; Selzer, M.; Nestler, B.; Kalidindi, S. R.
2020. Acta materialia, 195, 668–680. doi:10.1016/j.actamat.2020.06.003
A Lithium‐Free Energy‐Storage Device Based on an Alkyne‐Substituted‐Porphyrin Complex
Chen, Z.; Gao, P.; Wang, W.; Klyatskaya, S.; Zhao-Karger, Z.; Wang, D.; Kübel, C.; Fuhr, O.; Fichtner, M.; Ruben, M.
2019. ChemSusChem, 12 (16), 3737–3741. doi:10.1002/CSSC.201901541VolltextVolltext der Publikation als PDF-Dokument
Exploits, advances and challenges benefiting beyond Li-ion battery technologies
El Kharbachi, A.; Zavorotynska, O.; Latroche, M.; Cuevas, F.; Yartys, V.; Fichtner, M.
2019. Journal of alloys and compounds, 817, Article no: 153261. doi:10.1016/j.jallcom.2019.153261
Hetero-layered MoS/C composites enabling ultrafast and durable Na storage
Li, Z.; Liu, S.; Vinayan, B. P.; Zhao-Karger, Z.; Diemant, T.; Wang, K.; Behm, R. J.; Kübel, C.; Klingeler, R.; Fichtner, M.
2019. Energy storage materials, 21, 115–123. doi:10.1016/j.ensm.2019.05.042
Direct Conversion of CO₂ to Multi-Layer Graphene using Cu–Pd Alloys
Molina-Jirón, C.; Chellali, M. R.; Kumar, C. N. S.; Kübel, C.; Velasco, L.; Hahn, H.; Moreno-Pineda, E.; Ruben, M.
2019. ChemSusChem, 12 (15), 3509–3514. doi:10.1002/cssc.201901404
NiTiOPO phosphate: Sodium insertion mechanism and electrochemical performance in sodium-ion batteries
Nassiri, A.; Sabi, N.; Sarapulova, A.; Dahbi, M.; Indris, S.; Ehrenberg, H.; Saadoune, I.
2019. Journal of power sources, 418, 211–217. doi:10.1016/j.jpowsour.2019.02.038
Interface in Solid-State Lithium Battery: Challenges, Progress, and Outlook
Pervez, S. A.; Cambaz, M. A.; Thangadurai, V.; Fichtner, M.
2019. ACS applied materials & interfaces, 11 (25), 22029–22050. doi:10.1021/acsami.9b02675
A review of hard carbon anode materials for sodium-ion batteries and their environmental assessment
Peters, J. F.; Abdelbaky, M.; Baumann, M.; Weil, M.
2019. Matériaux & techniques, 107 (5), Article No. 503. doi:10.1051/mattech/2019029
Electromigration in Lithium Whisker Formation Plays Insignificant Role during Electroplating
Rulev, A. A.; Sergeev, A. V.; Yashina, L. V.; Jacob, T.; Itkis, D. M.
2019. ChemElectroChem, 6 (5), 1324–1328. doi:10.1002/celc.201801652
Insights into the electrochemical processes of rechargeable magnesium–sulfur batteries with a new cathode design
Vinayan, B. P.; Euchner, H.; Zhao-Karger, Z.; Cambaz, M. A.; Li, Z.; Diemant, T.; Behm, R. J.; Gross, A.; Fichtner, M.
2019. Journal of materials chemistry / A, 7 (44), 25490–25502. doi:10.1039/c9ta09155f
MgScSe - A Magnesium Solid Ionic Conductor for All-Solid-State Mg Batteries?
Wang, L.-P.; Zhao-Karger, Z.; Klein, F.; Chable, J.; Braun, T.; Schür, A. R.; Wang, C.-R.; Guo, Y.-G.; Fichtner, M.
2019. ChemSusChem, 12 (10), 2286–2293. doi:10.1002/cssc.201900225

This site uses third party website tracking technologies to provide their services. I agree and can revoke or change my consent at any time with future effect.

Settings Allow Decline Privacy PolicyLegal Notice